Tag Archives: pulleys single

BKH Series Cast lron Single Groove Sheaves Pulleys for “4L” or “A” Belts and “5L” or “B” Belts

Size Outside Diameter Pitch Diameter (4L/A) Pitch Diameter (3L) Type Dimension (O.L.) Dimension (F) Dimension (L) Dimension (P) Dimension (C) Dimension (X) Dimension (G) Dimension (E) Pulley Weight (LBS)
BK30H 3.15″ 2.40″ 2.80″ 1 1-15/16″ 7/8″ 1-1/4″ 7/8″ 1-5/16″ 7/16″ 3/16″ 1.2
BK32H 3.35″ 2.60″ 3.00″ 1 1-15/16″ 7/8″ 1-1/4″ 7/8″ 1-5/16″ 7/16″ 3/16″ 1.4
BK34H 3.55″ 2.80″ 3.20″ 1 1-15/16″ 7/8″ 1-1/4″ 7/8″ 1-5/16″ 7/16″ 3/16″ 1.6
BK36H 3.75″ 3.00″ 3.40″ 2 1-1/2″ 7/8″ 1-1/4″ 7/16″ 7/8″ 7/16″ 3/16″ 1.2
BK40H 3.95″ 3.20″ 3.60″ 2 1-1/2″ 7/8″ 1-1/4″ 7/16″ 7/8″ 7/16″ 3/16″ 1.4
BK45H 4.25″ 3.50″ 3.90″ 2 1-1/2″ 7/8″ 1-1/4″ 7/16″ 7/8″ 7/16″ 3/16″ 1.8
BK47H 4.45″ 3.70″ 4.10″ 2 1-1/2″ 7/8″ 1-1/4″ 7/16″ 7/8″ 7/16″ 3/16″ 2.2
BK50H 4.75″ 4.00″ 4.40″ 2 1-1/2″ 7/8″ 1-1/4″ 7/16″ 7/8″ 7/16″ 3/16″ 2.0
BK52H 4.95″ 4.20″ 4.60″ 2 1-1/2″ 7/8″ 1-1/4″ 7/16″ 7/8″ 7/16″ 3/16″ 2.1
BK55H 5.25″ 4.50″ 4.90″ 2 1-1/2″ 7/8″ 1-1/4″ 7/16″ 7/8″ 7/16″ 3/16″ 2.7
BK57H 5.45″ 4.70″ 5.10″ 2 1-1/2″ 7/8″ 1-1/4″ 7/16″ 7/8″ 7/16″ 3/16″ 2.7
BK60H 5.75″ 5.00″ 5.40″ 2 1-1/2″ 7/8″ 1-1/4″ 7/16″ 7/8″ 7/16″ 3/16″ 2.5
BK62H 5.95″ 5.20″ 5.60″ 2 1-1/2″ 7/8″ 1-1/4″ 7/16″ 7/8″ 7/16″ 3/16″ 2.6
BK65H 6.25″ 5.50″ 5.90″ 2 1-1/2″ 7/8″ 1-1/4″ 7/16″ 7/8″ 7/16″ 3/16″ 2.8
BK67H 6.45″ 5.70″ 6.10″ 2 1-1/2″ 7/8″ 1-1/4″ 7/16″ 7/8″ 7/16″ 3/16″ 2.9
BK70H 6.75″ 6.00″ 6.40″ 3 1-9/16″ 7/8″ 1-1/4″ 1/2″ 1/16″ 7/8″ 7/16″ 3/16″ 2.8
BK72H 6.95″ 6.20″ 6.60″ 3 1-9/16″ 7/8″ 1-1/4″ 1/2″ 1/16″ 7/8″ 7/16″ 3/16″ 3.1
BK75H 7.25″ 6.50″ 6.90″ 3 1-9/16″ 7/8″ 1-1/4″ 1/2″ 1/16″ 7/8″ 7/16″ 3/16″ 3.3
BK77H 7.45″ 6.70″ 7.10″ 3 1-9/16″ 7/8″ 1-1/4″ 1/2″ 1/16″ 7/8″ 7/16″ 3/16″ 3.8
BK80H 7.75″ 7.00″ 7.40″ 3 1-9/16″ 7/8″ 1-1/4″ 1/2″ 1/16″ 7/8″ 7/16″ 3/16″ 3.4
BK85H 8.25″ 7.50″ 7.90″ 3 1-9/16″ 7/8″ 1-1/4″ 1/2″ 1/16″ 7/8″ 7/16″ 3/16″ 3.8
BK90H 8.75″ 8.00″ 8.40″ 3 1-9/16″ 7/8″ 1-1/4″ 1/2″ 1/16″ 7/8″ 7/16″ 3/16″ 4.3
BK95H 9.25″ 8.50″ 8.90″ 3 1-9/16″ 7/8″ 1-1/4″ 1/2″ 1/16″ 7/8″ 7/16″ 3/16″ 5.0
BK100H 9.75″ 9.00″ 9.40″ 3 1-9/16″ 7/8″ 1-1/4″ 1/2″ 1/16″ 7/8″ 7/16″ 3/16″ 5.2
BK105H 10.25″ 9.50″ 9.90″ 3 1-9/16″ 7/8″ 1-1/4″ 1/2″ 1/16″ 7/8″ 7/16″ 3/16″ 5.5
BK110H 10.75″ 10.00″ 10.40″ 3 1-9/16″ 7/8″ 1-1/4″ 1/2″ 1/16″ 7/8″ 7/16″ 3/16″ 6.0
BK115H 11.25″ 10.50″ 10.90″ 3 1-9/16″ 7/8″ 1-1/4″ 1/2″ 1/16″ 7/8″ 7/16″ 3/16″ 6.4
BK120H 11.75″ 11.00″ 11.40″ 3 1-9/16″ 7/8″ 1-1/4″ 1/2″ 1/16″ 7/8″ 7/16″ 3/16″ 6.9
BK130H 12.75″ 12.00″ 12.40″ 3 1-9/16″ 7/8″ 1-1/4″ 1/2″ 1/16″ 7/8″ 7/16″ 3/16″ 6.9
BK140H 13.75″ 13.00″ 13.40″ 3 1-9/16″ 7/8″ 1-1/4″ 1/2″ 1/16″ 7/8″ 7/16″ 3/16″ 8.5
BK150H 14.75″ 14.00″ 14.40″ 3 1-9/16″ 7/8″ 1-1/4″ 1/2″ 1/16″ 7/8″ 7/16″ 3/16″ 9.5
BK160H 15.75″ 15.00″ 15.40″ 3 1-9/16″ 7/8″ 1-1/4″ 1/2″ 1/16″ 7/8″ 7/16″ 3/16″ 9.8
BK190H 18.75″ 18.00″ 18.40″ 3 1-9/16″ 7/8″ 1-1/4″ 1/2″ 1/16″ 7/8″ 7/16″ 3/16″ 12.8

BKH series bushed pulleys are manufactured for A, 4L, B, 5L, A.X., B.X., A.A., and B.B. belts. BKH series pulleys range in diameter from 3.15″ to 18.75″, but custom 1s are also available upon request. These pulleys use an H-style bushing, and this bushing type has a bore range of 3/8″ to 1-1/2″ and 10mm to 38mm. We stock a complete line of these bushings as well.

BKH-Series Pulley Size Chart

V-belt Pulley American Stanard – BKH series

The American standard pulley is manufactured according to the American ANSI standard. Its primary material is gray iron, which is suitable for 2L, 3L, 4L, 5L, A, B, C, D, 3V, 5V, 8V belts, J, L, and M multi-ribbed belts. American standard pulley product types: A.K., B.K., TA, T.B., T.C., B, C, D, 3V, 5V, 8V, J, L, M, V.P., V.L., V.M. Taper bushing pulleys are used in conjunction with STB, Q.D. or T.B. taper bushings.

Features and Benefits

I. The belt is an elastomer that can mitigate load impact and run smoothly without noise

II. Overload will cause the belt to slip on the wheel, thus playing the role of protecting the whole machine

Ⅲ. The grooves of most American standard pulleys are suitable for several different belt types, and the belt design and application are relatively flexible.

Ⅳ. There are many types of American standard pulley grooves and taper bushings. Some pulleys and bushings are allowed to be installed on the front and back, which has become a solution for harsh conditions on different occasions.

V. American standard pulleys and taper bushings can achieve precise balance control and perform well in transmission.

Technological Processing

Company Profile

HZPT is a professional manufacturer of mechanical parts. Our main products are belt pulleys, sprockets, taper sleeves, coupling, and other transmission parts. Its products are mainly exported to Germany, Britain, France, and other European countries, with an annual export value of 18 million U.S. dollars, accounting for more than 65% of the total output. The annual output value reached 200 million yuan.

Our products all adopt international, European, and American advanced industrial standards, use precise and good processing equipment, develop reasonable production technology, apply efficient and flexible management systems, and improve the quality management system to ensure that the product quality is good and the price is affordable.

Our factory adheres to the enterprise concept of “quality: the basis of enterprise survival, integrity: the basis of enterprise development, service: the source of enterprise development, low price: the instrument of enterprise development.” We are always looking forward to the presence of customers at home and abroad, seeking CZPT benefits and joint cause development.

Warehouse Stock

The warehouse covers an area of 5000 square meters and can provide all kinds of standard models A/B/C/Z, with complete quantity and large quantity in stock. Meanwhile, it accepts all sorts of non-standard customization for drawing production. The daily production capacity is 10 tons, and the delivery time is short.

Packaging & Shipping

Experienced Workers Packing Pulleys Carefully, safe wooden cases keep parts from being injured or damaged during sea or air shipment.

Additional information

Three basic types of pulleys, their applications and ideal mechanical advantages

There are 3 basic types of pulleys: movable, fixed and compound. Each has its advantages and disadvantages, and you should be able to judge which type is best for your needs by looking at the table below. Once you have mastered the different types of pulleys, you can choose the right pulley for your next project. Now that you have mastered the 3 basic types, it is time to understand their applications and ideal mechanical advantages.
pulley

describe

The stress characteristics of a pulley depend on its size and construction. These stresses are derived by comparing the stress characteristics of different pulley designs. Stress criteria include static and fatigue strength analyses and specify maximum stress ranges. Stresses are calculated in a 3D stress field, including radial, tangential and axial stresses. The stress characteristics of pulleys are critical to the design and manufacture of industrial machines.
The principal stresses on the pulley shell are distributed in the tangential and hoop directions, close to the centerline of the pulley. If the pulley has a wide face, the axial stress occurring near the shell/disk junction can be large. The stress distribution was determined using British Standard BS5400 Part 10: Stresses at the shell and end disc connections for infinite fatigue life.
Another type of composite is a pulley with a belt section. Such structures are well known in the art. The corresponding help chapters for these elements contain detailed descriptions of the internal structure of these components. Chamfers between pulleys can also be defined using multiple tapers, with a smaller taper extending from midpoint 44 to large diameter 42. Additionally, the pulley can have multiple taper angles, and as the pulley moves away, the taper angle is from the center.

type

A pulley system uses a rope to move the object and 1 side of the rope to lift the load. The load is attached to 1 end of the pulley, while the other end can move freely in space. The force applied to the free end of the rope pulls the load up or down. Because of this, the mechanical advantage of the movable pulley is 2 to 1. The greater the force applied to the free end of the rope, the greater the amount of movement achieved.
There are 3 common types of pulleys. The cast-iron variety has a rim at the front and a hub at the back. The arms of the pulley can be straight or curved. When the arms contract and yield instead of breaking, they are in 10sion. The top of the pulley centers the belt in motion and is available in widths ranging from 9mm to 300mm.
The rope, hub and axle are mounted on the pulley. They are common and versatile mechanical devices that make it easier to move or lift objects. Some pulleys change the direction of the force. Others change the magnitude. All types of pulleys can be used for a variety of different applications. Here are some examples. If you’re not sure which type to choose, you can find more resources online.
pulley

application

The applications for pulleys are almost limitless. This simple machine turns complex tasks into simple 1s. They consist of a rope or chain wrapped around a wheel or axle. Using ropes, 1 can lift heavy objects without the enormous physical exertion of traditional lifting equipment. Some pulleys are equipped with rollers, which greatly magnifies the lifting force.
When used properly, the pulley system can change the direction of the applied force. It provides a mechanical advantage and allows the operator to remain separate from heavy objects. They are also inexpensive, easy to assemble, and require little lubrication after installation. Also, once installed, the pulley system requires little maintenance. They can even be used effortlessly. Despite having many moving parts, pulley systems do not require lubrication, making them a cost-effective alternative to mechanical lifts.
Pulleys are used in many applications including adjustable clotheslines in different machines, kitchen drawers and motor pulleys. Commercial users of pulley systems include cranes. These machines use a pulley system to lift and place heavy objects. They are also used by high-rise building washing companies. They can easily move a building without compromising its structural integrity. As a result, many industries rely on technology to make elevators easier.

Ideal mechanical advantage

The ideal mechanical advantage of a pulley system is the result of rope 10sion. The load is pulled to the center of the pulley, but the force is evenly distributed over the cable. Two pulleys will provide the mechanical advantage of 2 pulleys. The total energy used will remain the same. If multiple pulleys are used, friction between pulleys and pulleys reduces the return of energy.
Lever-based machines are simple devices that can work. These include levers, wheels and axles, screws, wedges and ramps. Their ability to work depends on their efficiency and mechanical superiority. The ideal mechanical advantage assumes perfect efficiency, while the actual mechanical advantage takes friction into account. The distance traveled by the load and the force applied are also factors in determining the ideal mechanical advantage of the pulley.
A simple pulley system has an MA of 2. The weight attached to 1 end of the rope is called FA. Force FE and load FL are connected to the other end of the rope. The distance that the lifter pulls the rope must be twice or half the force required to lift the weight. The same goes for side-by-side pulley systems.

Materials used in manufacturing

While aluminum and plastic are the most common materials for making pulleys, there are other materials to choose from for your timing pulleys. Despite their different physical properties, they all offer similar benefits. Aluminum is dense and corrosion-resistant, and plastic is lightweight and durable. Stainless steel is resistant to stains and rust, but is expensive to maintain. For this reason, aluminum is a popular choice for heavy duty pulleys.
Metal can also be used to make pulleys. Aluminum pulleys are lightweight and strong, while other materials are not as durable. CZPT produces aluminium pulleys, but can also produce other materials or special finishes. The list below is just representative of some common materials and finishes. Many different materials are used, so you should discuss the best options for your application with your engineer.
Metals such as steel and aluminum are commonly used to make pulleys. These materials are relatively light and have a low coefficient of friction. Steel pulleys are also more durable than aluminum pulleys. For heavier applications, steel and aluminum are preferred, but consider weight limitations when selecting materials. For example, metal pulleys can be used in electric motors to transmit belt motion.
pulley

cost

Replacing a 10sioner in a car’s engine can cost anywhere from $90 to $300, depending on the make and model of the car. Cost can also be affected by the complexity of the pulley system and how many pulleys are required. Replacement costs may also increase depending on the severity of the damage. The cost of replacing pulleys also varies from car to car, as different manufacturers use different engines and drivetrains.
Induction motors have been an industrial workhorse for 130 years, but their cost is growing. As energy costs rise and the cost of ownership increases, these motors will only get more expensive. New technologies are now available to increase efficiency, reduce costs and improve safety standards.
The average job cost to replace an idler varies from $125 to $321, including labor. Parts and labor to replace a car pulley can range from $30 to $178. Labor and parts can cost an additional $10 to $40, depending on the make and model of the car. But the labor is worth the money because these pulleys are a critical part of a car’s engine.